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Objective: monitoring shallow groundwater storage changes

2.5 billion people
rely on
groundwater
exclusively for
drinking water
43% irrigation
water comes from
aquifers

Monitoring groundwater
drought complements
drought monitoring
efforts in other
processes.




The Catchment land surface model (CLSM)
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Improving groundwater estimates through assimilating
GRACE terrestrial water storage (TWS) anomalies
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Derivation of drought indices

Climatology

1948 Princeton forcing fields 2012

forcing bias correction GRACE DA and near-real time simulation
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Climatology was derived using daily
states within individual calendar
months




Global groundwater drought indices from GRACE data
assimilation
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GRACE based groundwater drought indices in comparison with US
Drought Monitor
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http:/idroughtmonitor.unl.edu/

These maps are updated weekly and available at
http://drought.unl.edu/MonitoringTools/NASAGRACEDataAssimilation.aspx



http://drought.unl.edu/MonitoringTools/NASAGRACEDataAssimilation.aspx

Evaluation using in situ groundwater data

groundwater well locations

* 10-—30 years of depth to water
table measurements

* wells located in confined or
semi-confined aquifers

» exhibit seasonal variation




CLSM based drought indices correlate well with similarly
derived drought indices based on in situ data

Correlation between groundwater estimates
driven by Princeton and in situ groundwater
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GRACE data assimilation reduced RMSE and improved
correlation between CLSM and in situ groundwater
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Regional average of groundwater storage anomalies (relative to temporal mean) from in situ data
and model simulations
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Correlations of GWI and SMI with SPIs
(based on estimates from 1948-2012)

SMI: standardized root zone
soil moisture anomalies
(relative to seasonal mean)
GWI: standardized
groundwater storage
anomalies (relative to
seasonal mean)

mean annual precipitation 1948-2010 (cm) CLSM bedrock depth (m)
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Groundwater correlates
more strongly with longer
scale SPIs

Bedrock depths have a
significant impact on
temporal variability of
groundwater and soil
moisture
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Groundwater drought is a different type of drought

Persistence (weighted sum of autocorrelation)

* Groundwater shows
longer persistence

* may be strongly impacted
by model parameters

* SMlshows longer
persistence in the eastern
US than in the west

Shorter persistence due
to stronger short-scale
precipitation variability
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Conclusions

1. Groundwater drought has unique temporal variability
* Influences of climate conditions and model physics
* groundwater drought indices are realistic at regional scales

2. GRACE TWS provides useful information for improving model
estimates

* GRACE data assimilation enables downscaling (including vertical dis-
aggregation) and near real time drought monitoring

* Improvements for the model and assimilation method are still needed

3. Model evaluation using in situ data is important
* Limitation of GRACE and data assimilation techniques
* using other types of in situ observations (streamflow and soil moisture)
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